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1. Introduction

Intensive efforts are underway to develop small PET systems dedicated to functional
imaging of breast cancer. These system developments will still require sophisticated
analyses of dynamic PET images to detect small lesions. We have been seeking a
clinically practical way to assist conventional visual inspection of static PET images with
temporal information derived from a dynamic PET-FDG imaging sequence. Modeling,
extracting and exploiting physiological features that can distinguish normal breast tissues
from axillary malignances in dynamic PET has been pursued since the last reporting
period. The study conducted in the current year was built on the previous year's research,
which concentrated on the development and testing of optimal computer-aided detection
criteria for kinetic feature identification from equivocal axillary metastases in noisy images.
Rather than replace conventional visual image inspection, our goal is to design an
intelligent system that will supplement it.

The whole proposed study consists of four tasks: Task 1: Developing the mathematical
formula to linearly map and identify the physiological features contained in PET dynamic
sinogram sequence (Month 1-8), Task 2: Developing the schemes for objective reduction
of dynamic sinogram data guided by the identified TAC subspaces of the desired signal
(tumor) and the interference (normal tissue background plus noise) (Month 4 - 12), Task
3. Deriving and analyzing statistical hypothesis test criteria to test the presence of an
axillary metastasis in the dynamic images reconstructed from the compressed sinogram
data (Month 13 - 24), and Task 4: Clinical Evaluation (Month 13 - 36). For each task,
several subtasks were defined (see the SOW in the grant application for details).

2. Body

During this annual reporting period, our efforts were mainly focused on Tasks 3 and 4.
These two tasks were those originally proposed for the second year of the study. After last
year's annual report, it was brought to our attention that we needed to obtain approval
from the U.S. Army Medical Research and Material Command Institutional Review Board
(US Army IRB). Although patients whose data are used in this study will have a PET scan
regardless of their participation in this study, they still must be prospectively recruited for
“additional” (temporal-based) images. Efforts have been underway for the last 6 to 8
months to complete the respective IRB approvals with protocol/language acceptable to
USC'’s Institutional Review Board and the US Army IRB. Because IRB approval is
pending, no dynamic imaging data have been acquired nor any subjects recruited for the
extra pictures since that time. Efforts in support of Task 4 have been limited to analyses of
dynamic imaging data that already existed in the patient database of USC PET center.
Further work on Tasks 1 and 2 has also been continued through this year. The major
accomplishments of this activity are presented as follows. The technical details and
related results can be found in Appendices.

2.1 Evaluation and Validation of PET-FDG tracer kinetic models and subspace
representations (Task 1 continuation).




Last year utilizing a literature search, we reviewed various types of mathematical models
of PET-FDG kinetics. We selected the three-compartmental (or 4-K compartmental model)
to use in these analyses [1].

Evaluation and validation of the standard PET-FDG 3-compartment metabolic models in
homogeneous and heterogeneous tissues was performed on dynamic PET data from the
image database at the USC PET center. Among them, 7 breast cancer and 5 lung cancer
cases were used for the kinetic analysis. In these images there were 7 primary breast
tumors, 2 axillary metastases, 5 primary lung tumors as well as 2 lung metastases. All
were proven by pathology.

Using the clinical data, the hypothesis that the kinetic features of primary tumors and
metastases are similar but they are different in malignant and normal tissues was tested.
For each patient data, ROIs were selected in well-defined primary tumor, metastases and
normal tissues, respectively. In the ROls, we observed that the radiotracer uptake within
the primary tumors or metastases increases with time, while the TAC decreases for
normal tissues. To further reveal the similarities and differences in kinetic parameters, two
methods were employed to fit the time activity curves measured in different tissue types
with the three compartmental kinetic models. The first assumed homogeneity within the
ROls and the other method accounted for potential heterogeneity. In the homogeneous
PET-FDG modeling, the nonlinear parameter estimation with the Newton-Raphson
algorithm was used to estimate the rates of transport of FDG in plasma to tissue, Ky, ko,
ks, and ky4, while fitting the time activity curves. The corresponding macro-parameters,
which define the physiological factors uniquely associated to tissue types, were computed
from the estimations of kis. In heterogeneous tissue, the time activity curve generated by
the ROI represents the mass-weighted average concentration of radioactivity in several
different "homogeneous" tissues. Thus, the physiological factors demonstrated in
heterogeneous tissues really represent those from several homogeneous tissues [1,2].
The multidimensional maximum likelihood estimation (MLE) method [7,8] was utilized to
estimate the macro-parameters of physiological factors in heterogeneous tissues. We
found that no significant "distance" between macro-parameter clusters of primary and
metastases. But the "distance" of macro-parameter clusters between malignancy and
normal tissue was significantly different ( > 0.006 and 0.001) for breast and lung cancers,
respectively. We also found that the use of heterogeneous model and the MLE results in
improved lesion detectability, specifically with respect to false positive and false negative
findings, although the mean square errors generated by fitting the time activity curve were
about the same for the two models. Since the initial dataset studied is too small to make a
conclusive decision, the assessment of the two models and their associated kinetic
parameter estimations will be continued in the third year when more clinical data will be
available.

2.2 |dentification of Physiological subspace directly from PET projection data
(Continuation for Task 2)

A data processing scheme was developed to directly identify the kinetic parameters and
the corresponding subspace features of the lesions. Instead of reconstructing all frames of



dynamic images for kinetic analysis, our method selectively reconstructs only one frame.
This frame is most often the one with the longest acquisition time period or highest signal-
to-noise ratio. From the selected image, the ROIs can be defined, which provides in turn
the ROIs for the sinogram domain. Different than the image data, each observation in
sinogram contains contributions from all image pixels on a ray line. Thus, filtering has to
be performed in order to remove the superimposed contributions from other pixels before
proceeding to estimation of subspace parameters in the sinogram ROIs. The filtered data
provide a more accurate parameter estimation. A filter was designed which turned out to
be a local filtered backprojection operator. The implementation of the filter in C++ was
completed.

2.3 Performance test of data compression algorithms for fast dynamic PET image
reconstruction (Task 2 continuation)

Three rank-reduction criteria that lower the dimensionality of dynamic sinogram in time
domain and speed up dynamic image reconstruction, developed in the first year, were
further evaluated with computer generated phantom dynamic data. The time activity
curves of the primary, metastatic lesions and normal tissues in the phantom data were
true clinical observations. A ROC study on the phantom data is ongoing to assess these
three algorithms in terms of lesion detectability (false positive and false negative rates). To
date, our results show the proposed maximum SNR criterion outperforms the conventional
SVD and maximum signal energy methods in terms of enhancing lesion to background
contrast in reconstructed images. This is because that the maximum SNR method best
maintains the characteristics of the lesion time activity curve after compression, while both
the SVD and the maximum signal energy methods [3, 9] change the characteristics of time
activity curve in the lesion substantially.

The performance assessment of the compression algorithm with clinical data will continue
to be pursued in the third year. The data processing scheme and the related software,
described in section 2.2, is to be applied to estimate kinetic features directly from PET
sinogram. The estimated features will be used in the developed maximum SNR criterion of
data compression.

2.4 Development of statistical hypothesis test criteria for the computer-aided
metastasis detection (Task 3)

Using the subspace kinetic features identified from well-defined malignances for
computer-aided detection of non-palpable metastases was accomplished by the
development of statistical hypothesis test criteria and decision rules. These criteria are
aimed at distinguishing the subspace features intrinsic to both malignancy and normal
tissues.

The generalized likelihood ratio test (GLRT) is a standard procedure for solving statistical
detection problems [5]. During this year, three types of GLRTs were derived for the
different assumptions on pixel spatial correlation. The first GLRT, that is an extension of
the algorithm first developed in [5], assumes that pixels in an arbitrarily selected ROl are




spatially uncorrelated. Two different hypothesized data models were used to characterize
the observations of large lesions and small lesions. In practice, image pixel values are not
statistically uncorrelated because each count contributes to all pixel values when an
image is reconstructed, so the second GLRT adds a pre-whiting procedure to the first. The
spatial covariance matrix required for the pre-whitening process is to be computed using
the methods given in [4,6]. Finally, the third GLRT extended the first by assuming that the
spatial inter-pixel correlation in each frame has the same structure but different energy
level.

The technical details in sections 2.1 — 2.4 can be found in Dr. C.C. Huang's thesis, which
is attached to this report as Appendix A.

2.5 Comparison and evaluation of three developed hypothesis test criteria (Tasks 3
and 4)

We compared three developed detection criteria using three different methods of TAC
evaluation by computer generated phantom data. The first method studied was
conventional averaging over an ROI, which assumes no spatial correlation between
pixels. The second method takes the spatial inter-pixel correlation into account. The
covariance matrix is computed frame by frame, based on Huesman's analytical formulas
and Carson's simplifications. In this method, the TACs for individual pixels in an ROl are
first spatially decorrelated by the covariance matrix, and then averaged for kinetic
parameter estimation. The third method assumes that the spatial inter-pixel correlation in
the i-th frame has the form oiR, i.e., each frame has the same spatial correlation structure
R, but a different energy lever o;. Thus, the covariance matrix computed in the least noisy
frames can be used as matrix R for noisier frames. For receiver-operator curve (ROC)
study, the kinetic features estimated from these three methods are incorporated into the
three GLRTs for lesion identification, developed from the generalized likelihood ratio
principle as described above. The rates of true and false positives are counted to form
ROC curves. We used 50 sets of dynamic phantom simulations with/without artificially
inserted lesions. These lesions were assigned clinically measured TACs of malignant lung
and breast tissues, respectively. The results show that Method 3 increased specificity and
accuracy by 20 and 11%, respectively, as compared to the other two methods. No
significant difference was observed between Methods 1 and 2, which could be due to
inaccurate covariance matrix estimation introduced by the simplification made in the early
frames. Further study of this will continue through the next year.

This work has been presented in SNM annual conference 2001, Toronto, Ca., June 2001,
see Appendix D for details.

3. Key Research Accomplishments
The main accomplishments in Year 2 are

1. Evaluation of PET-FDG three compartmental models in homogeneous and
heterogeneous tissues using clinical breast and lung cancer patient data, validation
of the subspace representations for time activity curves (TAC) in different tissues,




such as primary tumors, metastases and normal tissues, etc. and guantification of
the different kinetics between normal and malignant tissues as well as the similar
kinetics between primary and metastatic lesion kinetics.

Establishment of a data processing scheme to estimate kinetic features of three
compartmental models directly from PET sinogram and implementation of the
scheme with C++.

Design of a filter to remove the contributions of unwanted image pixels from
sinogram data for more accurate estimation of kinetic features from PET project
data, test of filter performance in sinogram data and extension of the image-pixel-
based estimation algorithms to a scan-projection-based approach.

Assessment of three data compression algorithms, developed in the last reporting
period, for fast dynamic image reconstruction using computer generated phantom
data. Comparison of the receiver-operating characteristic (ROC) curves between
the original and compressed FBP dynamic images.

Development of statistical hypothesis test criteria for the computer-aided
metastasis detection. Derivation of three statistical hypothesis test criteria by
generalized maximum likelihood ratio principle that are able to distinguish the
physiological factors (i.e. subspace features) associated to malignances and
normal tissues.

Assessment of the three different hypothesis test criteria by performing a receiver
operating characteristic (ROC) study on computer simulated phantom and small
size of clinical data.

Accomplishment of the respective IRB approvals with protocol/language acceptable
to USC's Institutional Review Board and the US Army IRB.

4. List of Reportable Outcomes:

4.1 Publications

1.

C. C. Huang, Computer-Aided Lesion Detection in Positron Emission
Tomography: A Signal Subspace Fitting Approach”, Ph. D. Thesis, submitted to
Electrical Engineering Department of USC, May 2001.

X. Yu, C. C. Huang and P. S. Conti, ""Assessment of ROI-based Time Activity
Analyses in Dynamic PET For Oncology " SNM Annual Conference 2001, Toronto,
Ca., June 2001.

X. Yu, C. C. Huang and R. Leahy, “Applied Subspace Identification, Filtering and
Identification to Lesion Detection in Dynamic PET Images", revising for a
submission to /EEE Trans. on Medical Imaging, December 2001.




4.2 Graduation

Two students graduated with their Ph. D. and M.S. degrees, respectively. Both were
partially supported by this award.

5. Conclusion

In Year 2, study of physiological feature modeling, tumor identification and objective rank-
reduction of dynamic PET sinogram for fast image reconstruction was continued. The
mathematical models and algorithms developed in Year 1 were validated and evaluated
with both computer generated phantom and a few sets of clinical data selected from the
patient database of USC PET center. We found that there were no significant differences
between macro-parameters of primary and metastatic tissue, which implies there are
certain kinetic similarities between them. In contrast, a large difference was noted
between malignant and normal tissue macro-parameters for both breast and lung cancers.

The major focus of Year 2 was to develop statistical hypothesis test criteria for the
computer-aided detection of kinetic features in metastases. Three types of generalized
likelihood ratio tests (GLRT) were derived under different assumptions on pixel spatial
correlation. We compared these three GLRTs using three different methods of TAC
evaluation and computer generated phantom data. The lesions in the phantom data were
equivocal or invisible and assigned to time activity curves of malignant lung and breast
tissues clinically measured in patient data. The results show that the best of the three
increased specificity and accuracy by 20% and 11%, respectively, compared to the other
two methods.

Results of Year 1 and Year 2 study indicate that it is potential to improve lesion
detectability through sophisticated physiological modeling and statistical signal processing
techniques. All findings in theory and simulations will be further tested and evaluated by a
larger group of clinical patient data with proven primary breast cancer and palpable
axillary metastases in Year 3.
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Chapter 4

Dynamic Data Formulation and Subspace

Identification

4.1 Overview

In computer-aided lesion detection with FDG-PET dynamic images, the TACs de-
fined in Chapter 3 are useful for separating lesions from normal tissues [29]. However,
how to identify the exponential subspace functions and incorporate the identified
subspaces into a detector remains a problem. In this chapter, based on the dynamic
temporal-spatial data structure, signal-subspace-fitting methods, such as the least
squares (LS) method and the singular value decomposition (SVD) method, are used
to estimate parametric (exponential function) and nonparametric (physiological fac-

tor) subspaces, respectively.
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4.2 Dynamic Data Formulation

One of the advantages in the FDG-PET dynamic study is that the dynamic images
can be formed into a temporal-spatial data matrix such that some useful signal array
processing techniques can be applied. Let yx be the kinetic data measured by the

PET scanner for the p-th pixel in a heterogeneous ROI, then

Ye = Xgp+ng

= Ea; + ng (4.1)

where n, denotes the noise and is assumed to be Gaussian. Given that P denotes
the number of pixels in the ROI, the temporal-spatial data matrix for the ROI from

a PET scanner can be expressed as

Y é [xl,x2,---,xP]+[n1,n2,---,np]
— EA+N (4.2)
where
A = [alaa27"'7aP]
A
N = [nl,nz,---,np]. (43)
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In array signal processing, the column space of the matrix E in (4.2) is called
the signal subspace [69]. In this dissertation, the signal subspaces are called the
lesion and normal tissue subspaces which are denoted as (H) and (S), respectively,
where (H) is the subspace spanned by the columns of the Nxp matrix H, (S) is
the subspace spanned by the columns of the N x? matrix S, and p+t < N. Based
on the compartmental model analysis, the subspaces (H) and (S) have the input
plasma subspace in common, otherwise, they are linearly independent in which case

the columns of the concatenated matrix [HS] span the (p+ t)-dimensional subspace

(HS).

4.3 Subspace Identification from Know Tissue

Type

Two categories of subspace identification methods are used in this dissertation,
namely, non-parametric and parametric methods, for solving the signal-subspace-
fitting problem. The non-parametric techniques used here simply decompose the
observed data to extract the subspaces using a singular value decomposition method.
The parametric method is used to estimate the parameters of interest in spectrum-
like functions, e.g., least squares estimation for the exponential parameters in Eq.
(3.7).
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4.3.1 Non-Parametric: Singular Value Decomposition

The non-parametric methods find a multidimensional signal subspace by a simple
eigen-decomposition of the autocorrelation matrix or a singular value decomposition
of the data matrix. The SVD method is used in this dissertation to estimate the
physiological factors defined in Eqg. (3.17). Given that the coefficient matrix A

in Eq. (4.2) is uncorrelated with the noise N which is assumed to be white, the

autocorrelation matrix of the data Y can be decomposed as follows:

Ry = YYT

HAATH + 021
= ®[A+ 07

= &,A,87 + &,A, 87 (4.4)

where we assume that AAT, is a full rank matrix, and therefore HAATHT can
be eigendecomposed as ®,AP®T such that (H)=(®,). The r eigenvalues of the
decomposition combine with the noise covariance to form the r x r diagonal matrix
A, = A + 021, with the eigenvalues in A, arranged in decreasing order. The (N -

r) x (N —r) diagonal matrix A, contains the N — r repeated eigenvalues ¢Z. Thus
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the eigen-decomposition of the data autocorrelation matrix in Eq. (4.4) results in a

signal subspace ®, and a noise-only subspace ®..
4.3.2 Parametric: Least Squares Estimation

Finding the subspace using the parametric algorithm is equivalent to the estimation
of the exponential basis in Eq. (3.7), which is similar to the well-known problem
of finding the direction of arrival (DOA) in signal subspace processing [69]. In this
dissertation, the least squares (LS) method is applied for the parametric method
and the best fit of parameters to the observed data are chosen to constitute the

subspaces. Subspace fitting using the LS method is defined as [69):
H A =arg min ||Y - HA|% (4.5)

where || - || denotes the Frobenius norm. Because the subspace fitting problem

A

is separable in H and A [69], by substituting the pseudoinverse solution, A =

(HTH)-'HTY, back into Eq. (4.5), the following equivalent problem is derived:

H = argrrgnHY—H(HTH)"lHTYH%-
= argmin| P4V

= argmax|[PxY||%
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= arg m}%xtr{PHYYT} (4.6)

where Py = H(HTH) 'HT is the orthogonal projection matrix that projects onto
the column space of H and “tr” means the trace operator. In feature identification
using parametric algorithm for a FDG-PET dynamic study, the only unknowns are

the exponential parameters, the LS method becomes to search the parameters over

a reasonable range for the tracer kinetic parameters.
4.3.3 Subspace Refining: A Subspace Distance Measure

The lesion and normal tissue subspaces estimated individually by the parametric or
non-parametric me’;hods from the known types of tissue data generally capture the
characteristics of lesion and normal tissues, respectively. But from the physiological
compartmental model analysis, the resulting two subspaces, containing the common
input plasma subspace, may be so close to each other that they can hardly be
separated. Hence, to improve the lesion detection performance (see Chapter 5), a
subspace correlation method is used to refine the identified subspaces.

The subspace refining procedure selects two subsets of basis vectors (column

vectors) from the identified subspaces (H) and (S) based on subspace distance max-

imization between the two candidate subsets, subject to the condition that the LSE
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are less than given values. By the process of refining, the common input plasma
function will be excluded from both lesion and normal tissue subspaces.

By a subspace distance measure, the subspace refining can be described as: given

the identified subspaces (H) and (S),

H',S' = arg max distance {H,S}

||Y - PH’YHF < €1

4.7
HY—PS’YHF<€2 ( )

subject to {

where distance {H,S} 2 /1 — r? is the subspace distance, where r; is the largest

principal correlation coefficient between H and S [21], and €; and €, are the thresh-

olds set for achieving the fidelity criterion.
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Chapter 5

Matched Subspace Detector

5.1 Overview

After identifying the lesion and normal tissue subspaces using the methods described
in Chapter 4, how. to incorporate the identified subspaces into statistical decision
criteria becomes critical and will be addressed in this Chapter. The generalized like-
lihood ratio test (GLRT) is a standard procedure for solving the detection problem
(55, 75, 76, 77, 78]. The GLRT is used to derive the matched subspace detector
which is the general building block of multi-rank matched filter in signal processing.
In sonar signal processing, the matched subspace detector is also called a matched

field detector [54]. Generally, the matched subspace detectors turn out to be a ratio

of generalized energy detectors.
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In this Chapter, three types of GLRTs will be derived under different assumption
of voxel spatial correlation. The first GLRT directly applies the algorithm devel-
oped in [55] by assuming that pixels are spatially uncorrelated. Both additive and
replacement noise models are used to characterize the observations of large lesions
and small lesions in this approach. Considering that image pixel values are not
statistically uncorrelated because each count contributes to all pixel values [7], the
second GLRT adds a pre-whitening procedure to the first. The épatial covariance
matrix required for the pre-whitening process is to be computed using the methods
described in Appendix B [7, 30, 31]. Finally, the third detector extends the GLRT
criterion to a multi-pixel detection. In this approach, it is assumed that the spa-
tial inter-pixel correlation in each frame has the same structure but different energy

level.

5.2 Hypothesized Data Model

In this dissertation, depending on the size of lesions, two data models are applied
for the detection hypothesis, namely, the replacement model and the superimposed

model.
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5.2.1 Replacement Model

Based on a replacement model, which is used to model a large lesion in FDG-PET
images, two possible hypotheses regarding how the PET data was generated are
needed. The null hypothesis Hy says that the data consists of a sum of normal tissue

signal xo and noise ng. The alternate hypothesis H; says that the data consist of a

sum of lesion signal x; and noise n. That is

Hy:y = Xo+no (5.1)
H :y X +m

where the signal x; is assumed to obey the linear subspace model

S¢, SecRN*, o¢eR,

Xo

x; = HI, HeRV**, @0eR, t<N-—p (5.2)
5.2.2 Superimposed Model

For the small lesion case, partial volume effects will cause the lesion signal to be

mixed with the background normal tissue signal, hence, it is best represented by a
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superimposed model. To model the small lesion case, the superimposed model is

used for the hypothesis H; which are given by

Hy:y = Xoo+no (5.3)
H:y = x3+Xu+m

where the linear model for the x; (lesion signal) and n; are the same as those defined

in the replacement model and

Xoo = S¢y, ¢, € R, under hypothesis Ho

X1 = S¢,, ¢, € R', under hypothesis H;. (5.4)

5.3 GLRT: Spatially Uncorrelated Assumption

5.3.1 Replacement Model

Based on the spatially uncorrelated assumption, the noise n; can be modeled as
normal with zero mean and covariance matrix o?I. Then, the detection problem for

the replacement model becomes a test of the distributions:

Hy : y=Xo+no:N[S¢,o]] (5.5)
H, : y=X1+n13N[H9’O’%I}' |

The likelihood ratio test can be written as

1(8,0%;
&) = l((¢,03;}}"))
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_NJ2
o 1 1
= (‘15) eXP{“’gc‘r?”nlllg'i'E;anollg}- (5.6)

go

Hence, the generalized likelihood ratio test (GLRT) can be derived by substituting

the maximum likelihood estimate (MLE) of n;, 6 and ¢:

. 16,63y
ily) = Lo%i¥)
l( ’ 0;3’)
52\ "NV 1. 1 ..
= (;é) eXP{—Q—&—% |fi; |§+'2'gg||no||§}- (5.7)

The MLE, 1;, é, and &), can be written as

¢ = (STs)"'s”y
6 = (H™H)'H"y
fp = y—-Sp=y-S(878)"'s"y =Psy

A, = y—HO=y—HHTH)'H y = Pgy (5.8)

where P} is the orthogonal projection onto the complement subspace of (H). Be-
cause o? is unknown and the MLE of o7 is &? = %||A;][3, it is more convenient to

replace the GLRT by the (N/2)-root GLRT. Hence, the GLRT for the replacement

hypothesis model becomes

L(y) = [f(Y)]2/N=||
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5.3.2 Superimposed Model

Under the spatially uncorrelated assumption, the detection problem for superim-

posed model is a test of the distributions:
Hy : y=Xo0+no : N[S¢,, 1] (5.10)
H1 y=X1+X01+n1 : N[HG-I-S(}SI,O'%I]
Hence, the GLRT can be expressed as
7 l éa ¢5 3 &2, y
l(y) — ( _ 1A21 )
lo,68;y)
52\ ~"? 1, 1,
= (Z) " oof-gghite ggloatf. 61

The MLE fy is the same as that derived in the replacement model, i.e.,
(5.12)

For the 1i;, because the MLE of @ and ¢, are given by

| Sty = (H s|T[H s])” [H 5]y

4] -
é]
H'H HTs ] [H?
- [STH sTs} [ST}‘Y



[ (HTP{H)'HP} ] (5.13)
(STP4S)~'STP4
and from Eq. (A.5) in Appendix A, then
n = y-— HO — Sq§1
~ y— H(HTPL{H)'H P}y — S(STP3S)'S"Pyy
= y—Epnsy — Esny
= Pigy (5.14)

where Egs and Ssy are called the oblique projections defined in Appendix A. There-

fore, the (N/2)-root GLRT for the superimposed model becomes

[ ] 5

L(y) = [y = HEOII

[ V1)

TPJ.
F 5%, (5.15)
Y 'Prsy

Note that the matrices H and S used to derived the above GLRTs for both re-
placement and superimposed models are assumed independent (after subspace angle
refining). In Appendix C, we showed that the GLRTs can not be improved by fur-

ther projecting the lesion subspace (H) onto the orthogonal complement subspace of

the normal tissue subspace (S). The GLRTs for the superimposed model are exactly
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the same before and after using the orthogonal refined subspaces. For the replace-
ment model, The GLRT is degraded after using the refined orthogonal subspaces. In

summary, the GLRT can not be improved if two orthogonal subspaces are defined.

5.4 Spatially Correlated Assumption

5.4.1 Local Statistics Computation

It is known that image pixel values are not statistically uncorrelated because each
count contributes to all pixel values [7]. Hence, a decorrelation for the pre-whitening
process is important before applying the GLRT. The decorrelation procedure re-
quires the computation of a covariance matrix in the ROI. The covariance matrix
can be estimated by simply averaging the samples around the ROL However, this
sample-averaging method to compute the local statistics can be poor since the local
statistics assumption required may be invalid [27, 79]. Calculation accuracy can
be guaranteed by using the formulas developed in [7, 19, 30, 31] which exploit the
Poisson data model for a PET system. The linear and non-linear covariance com-
putation methods for the FBP and MAP reconstructed images, respectively, are

described in Appendix B, and are used here to estimate the inter-pixel covariance,

frame by frame.
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5.4.2 GLRT

Because of the spatially correlated assumption, the average of TACs over an ROI
may enhance rather than suppress the observation noise. Thus, to mitigate this, the
TAC-averaging is preceded by a spatial decorrelation operation before applying the

GLRT. This spatial decorrelation is usually called a pre-whitening procedure.
5.4.3 Multi-Pixel GLRT

In this subsection, the GLRT criterion is extended to multi-pixel GLRT detection.

In this approach, it is assumed that the spatial inter-pixel correlation in each frame
has the same struct‘ure but different energy level. Let the P-dimensional vector f; =
[£:(1), £i(2), -+, fi( P)]" denote the spatial pixel data for the i-th frame and denote
F = [f,,f,,---,fn]. We assume that all the columns of the matrix F are independent.

Hence Y 2 [y1,¥2, > ¥YP] = FT. The derivation of the multi-pixel GLRT for the

constrained correlation structure is based on a replacement model, i.e.,

H01Y=X0+No (5]_6)
H,:Y=X,+N;. '

The GLRT can be derived as (see Appendix B):

1+ (G-/?R8)TPL(G~Y/?R3)

= 17 (G-/2R3)T P4 (G-1/?R3) (5:17)

;3(Y)
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where G 2 RRT — (R5)(R3)7, R is the covariance matrix, and § 2

s’ 2 1TM~2. The matrix M is the correlation structure for each frame.

(s7s)"%s,
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Chapter 6

Experiment and Result

In this Chapter, experiments and results for dynamic feature identification and lesion
detection in FDG-PET dynamic study are presented. Both clinical and phantom
dynamic data will l.)e used in this dissertation. For the clinical dynamic data, two
cases will be demonstrated, including one lung cancer dynamic study and one breast
cancer dynamic study. Each study contains one confirmed primary lesion ‘which
will be used for lesion subspace estimation, and one small lesion which will be used
for the subspace fidelity and GLRT demonstration. For the breast cancer dynamic
study, there is one “ynknown” small lesion which can not be confirmed by eye,
but is successfully enhanced after applying the GLRT. For the phantom data, two
phantoms, one with five artificial lesions inserted and the other with only pure normal
tissue background (no lesion), are generatéd. The time activity curves (TAC) of a

lesion and normal tissues observed from the clinical lung cancer dynamic data are
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used to simulate the dynamics for the phantom. To calculate the local statistics for
the pre-whitening purpose, the methods [7, 19, 30, 31] described in Appendix B will
be applied for covariance computation. A receiver operating characteristic (ROC)

study for the GLRT performance will be presented based on the dynamic phantom

study.
6.1 Protocol of FDG-PET Dynamic Study

The clinical FDG-PET dynamic data was acquired with a Siemens/CTI ECAT
Model 953A whole-body PET scanner. This device provides 31 contiguous transaxial
image planes with an axial field of view of 10.8 cm. The nominal intrinsic resolution
of the system is 4 mm in all 3 dimensions. Consecutive detector rings are separated
by tungsten septa in order to reduce scatter noise. Dynamic data was acquired from
0 to 55 minute post injection. The final 10 minute frame can be used in place of
the routine static study used in purely clinical examinations. The dynamic struc-
ture protocol for the clinical data acquisition is listed in Table 6.1. Based on this

protocol, an FDG-PET dynamic study contains 36 frames for a fixed plane position.
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Scan Type | Scan Times [ Frame Duration |
Dynamic scan 0 - 2 min 15 sec/frame
Dynamic scan 3 - 5 min 30 sec/frame
Dynamic scan 6 - 25 min 1 min/frame
Dynamic scan 26 - 45 min 5 min/frame

Static scan 45 - 55 min 10 min

Table 6.1: Dynamic data acquisition protocol

6.2 Clinical Study

Two clinical FDG-PET dynamic studies, one lung cancer study and one breast
cancer study, will be used in this dissertation. Each study contains one confirmed
primary lesion whiE:h will be applied for lesion subspace estimation and one small
lesion which will be used for the subspace fidelity and GLRT demonstration. The
last frame image reconstructed from the FBP method is shown in Figure 6.1: (a)
and (b) for the lung cancer study and the breast cancer image, respectively.

An ROI, indicated by a rectangle, can be drawn over a segment of the tissue
on the dynamic FDG-PET images and then duplicated to all frames, so that the
activity in that tissue can be tracked over time. The advantage of the ROI method
over a single pixel is that it is less sensitive to noise and typically results in a
smaller error in the parameter estimates. Data obtained through ROI analysis of

dynamic images produces a tissue time activity curve (TAC). This curve represents
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the counts/second/pixel (or counts/second/ml, if calibration data is available) in a
given region as a function of time. Figure 6.1: (c) and (d) shows examples of TAC

for the two clinical dynamic studies.

The kg carcer inage The breast carcer image
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Figure 6.1: Clinical dynamic studies used in this dissertation: (a) the lung cancer
image (FBP), (b) the breast cancer image (FBP), (c) one TAC example from the
lung cancer dynamic study, (d) one TAC example from the breast cancer dynamic

study.
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6.2.1 Lung Cancer FDG-PET Dynamic Study

In the lung cancer FDG-PET dynamic study, two lesions, one primary (large and
clearly visualized) and the other a metastasis (smaller and barely seen), in a lung
cancer patient with multiple metastases, are indicated in Figure 6.2 (a). Three
5x5 pixel ROIs, L1, L2, and BG, indicated in Figure 6.2 (a), were selected from the
primary lesion, the metastasis lesion, and the normal lung tissue, respectively. Their
corresponding TACs are plotted in Figure 6.2 (b) where the TACs from the L1 and
L2 both have the trend to increase with time while the BG TAC does not. This
demonstrates the property of FDG kinetics to show differential uptake in lesions and
normal tissue.

6.2.1.1 Subspace Estimation

The TACs observed from the L1 and BG ROIs in Figure 6.2 (b) were used to
form the temporal-spatial data matrices for identifying the lesion and normal tissue
subspaces, (H) and (S), respectively.

For the parametric method, the LS search algorithm was used. For this lung

cancer study, the TAC subspaces of normal lung tissue and lung cancer estimated by
—91t, e—ezt, e—-93t}

the LS method were found to be spanned by the exponential basis {e

and {1—eP1t, e=P2t, te~Pst}, respectively, and the parameter sets were {6, = 0.00025,
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Figure 6.2: Test image reconstructed from FBP: (a) the last frame of the dynamic
FDG-PET FBP reconstructed images, where three ROIs were chosen: L1 in the big
lesion, L2 in the small lesion, and BG in the background, (b) the corresponding
TACs for L1, L2, and BG, respectively.

6, = 0.005, 65 = 0.05} and {B; = 0.005, B, = 0.0223, 85 = 0.00125} for BG and L1,
respectively. For the non-parametric method, we applied the SVD method, where
the data correlation matrix was estimated using the temporal-spatial data matrix
formed from L1 and BG ROIs. The eigenvectors corresponding to the first d1 and
d2 significant eigenvalues of the two estimated correlation matrices were chosen to
span the TAC subspaces of the lung cancer and normal lung tissues, respectively. In
our study, dl = d2 = 2.

The accuracy (fidelity) of the lesion subspace estimated using the primary lung

tumor was examined by projecting the observed L1 and L2 TACs onto the estimated
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lesion subspace. Also, the accuracy of the normal tissue subspace estimated using
the BG ROI was examined by projecting the observed BG TAC onto the estimated
normal tissue subspace. On the other hand, the separability of the subspace was
examined by projecting the L1 and L2 TACs onto the normal tissue subspace, and
by projecting the BG TAC onto the L1 subspace. The results from the LS method
and the SVD method are shown in Figure 6.3. It was demonstrated that the TAC
of the metastatic lesion can be represented by the subspace features extracted from
the big lesion with a high accuracy in both methods, and that a large separability

exists between the lesion subspace and the normal lung tissue subspace.
6.2.1.2 GLRT

A test region which includes the small lesion and some part of the primary' lesion
was selected as indicated by a rectangle in Figure 6.4 (a). The GLRT (white noise
assumption) with either a superimposed or a replacement data hypothesis model
in Eqs. (5.9) and (5.15) was used to perform a multiple pixel test for each 5x5
pixel ROI contained in the test region. The corresponding GLRT result is shown in
Figure 6.4 (c)-(e) which indicates that the matched subspace detection incorporated

with the lesion and normal tissue subspaces extracted by the SVD method and the
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Figure 6.3: Comparison of accuracy and separability of extracted subspaces of TACs
in lesions and normal tissue by the SVD method: (a) TAC in L1 represented by
the normal tissue subspace, (b) TAC in BG represented by the lesion subspace,
(c) TAC in L2 represented by the lesion and normal tissue subspaces, respectively.
Comparison of accuracy and separability of extracted subspaces of TACs in lesions
and normal tissue by the LS method: (d) TAC in L1 represented by the normal
tissue subspace, (¢) TAC in BG represented by the lesion subspace, (f) TAC in L2
represented by the lesion and background subspaces, respectively.
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LS method significantly increases the lesion-to-normal tissue contrast for the small
lesion relative to the original FBP image in Figure 6.4 (b).

Another test region was selected to include the heart area in order to demonstrate
suppression of activity in the heart by the GLRT. Figure 6.5 (a) shows the selected
test region in the lung cancer dynamic study, where the primary lesion, the small
lesion, and the heart area were all included. Figure 6.5 (b) shows the original 3-D
mesh of the test region. T‘he GLRT of the test region is shown in Figure 6.5 (c),
where the heart activity is suppressed significantly after applying the GLRT.

In order to apply the whitening process for the spatially uncorrelated FBP data,
we used the method proposed by Carson [7] to calculate the spatial covariance ma-
trix. Carson’s approximation formula assumes that the ROIL is smooth and the pixel
variances inside the ROI are similar. Therefore, the covariance matrix is just a func-
tion of the filter and the location of the pixels. The advantage of Carson’s formula
is that it does not need access to the original projection data and is convenient for
routine use. See Appendix B for more details. Figure 6.6 shows the results of the

GLRT for the FBP image after applying the estimated covariance matrix.
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Figure 6.4: (a) The last frame of the dynamic FDG-PET FBP reconstructed images,
where a rectangle indicates a test region containing a part of the big lesion and the
whole small lesion, (b) 3-D mesh of the test region indicated in (a), (c) GLRT with
replacement model for TAC subspaces obtained by the SVD method, (d) GLRT with
replacement model for TAC subspaces obtained by the LS method, (e) GLRT with
superimposed model for TAC subspaces obtained by the LS method.
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Figure 6.5: (a) The test region indicated by a rectangle in the lung cancer study,
where the primary lesion, the small lesion, and the heart area were all included. (b)

3-D mesh of the original test region. (c) The result of the GLRT.
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Figure 6.6: (a) The test region indicated by a rectangle in the lung cancer study. (b)
3-D mesh of the original test region. (c) GLRT (white noise). (d) GLRT (non-white).

(e) Multi-pixel GLRT.
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6.2.1.3 Subspace Refining Method

For the proposed subspace refining algorithm described by Eqg. (4.7), we estimated
four LS TAC bases for both lesion and normal tissue subspaces, and used the sub-
space refining algorithm to retain only three bases for both subspaces. Figure 6.7
(a) and (b) shows the fidelity between the estimated TAC by the identified sub-
spaces and the observed TAC without subspace refining (four bases) and Figure 6.7
(c) shows the GLRT. The corresponding results after subspace refining (three bases
retained) are shown in Figure 6.7 (d), (e), and (f), respectively, where not only the
fidelity was preserved, but also the GLRT performance is significantly improved.
For the orthogonal projection, we already showed, see Appendix C, that the
refined subspaces by the orthogonal projection can not improve the GLRT with the
original estimated subspaces. The experimental results are as follows. Figure 6.8
(a) and (b) show the test region chosen and its corresponding 3-D mesh. Figure 6.8
(c) and (d) show the GLRT' for the superimposed model before and after using the
orthogonal refined subspaces, where the two GLRTs were exactly the same. Then
for the GLRT of the replacement model, Figure 6.8 (f) shows that the GLRT using
the refined orthogonal subspaces had poor performance compared to Figure 6.8 (e),

where the original subspaces were applied for the GLRT.
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Figure 6.7: Subspace refining using the subspace distance measure. Without sub-
space refining: (a) lesion TAC and (b) normal tissue TAC both show the fidelity
of subspaces estimated from observed TAC, (c) GLRT. With subspace refining: (d)
lesion TAC and (e) normal tissue TAC shows the fidelity of subspace refined. It
is clear that the refined subspaces maintain the fidelity requirement. (f) GLRT
performance is improved by using the refined subspaces.
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Figure 6.8: Subspace refining using the orthogonal projection. (a) test region inside
the lung cancer image, (b) original 3D mesh. GLRT for the superimposed model: be-
fore, (c), and after, (d), the orthogonal subspace refining. GLRT for the replacement
model: before, (e), and after, (f), the orthogonal subspace refining.
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6.2.1.4 MAP Reconstructed Image

We also tested the GLRT for the lung cancer FGD-PET dynamic study by the MAP
reconstructed algorithms [42, 18, 43, 24]. For the non-white noise case, the fast
covariance calculation method proposed by Jinyi and Leahy [31] for the MAP image
was used here for the decorrelation purpose. This covariance calculation method
was summarized in Appendix B. We used the same subspaces estimated from the

FBP image. The results of GLRT are shown in Figure 6.9.
6.2.2 Breast Cancer FDG-PET Dynamic Study

In this case, we examined a clinical, 36-frame, dynamic FDG-PET study of a patient
with a primary breast cancer and a known axillary metastasis. The primary cancer
was clearly visualized in the left breast, while the smaller axillary metastasis lymph
node was marginally visualized, see Figure 6.10 (a)-(b). TACs obtained in the ROI
placed on these tumors and contralateral normal breast tissue are shown in Figure
6.10 (c). The TACs showed that FDG radiotracer uptake within the lesions increases
with time, while the TAC decreases for normal tissue.

The subspaces for the breast lesions and the normal tissues were identified using
the SVD method. The subspace fidelity and separability were demonstrated by fit-

ting the metastasis lymph node ROI onto the subspaces estimated from the primary
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Figure 6.9: The MAP reconstructed lung cancer FDG-PET image. (a) The test
region indicated by a rectangular for the GLRT. (b) 3-D mesh of the original test
region. (¢) GLRT: white Gaussian noise. (d) GLRT: non-white Gaussian noise.
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cancer ROI and the normal breast tissue ROL Figure 6.11 (d) shows that the sub-
space of the lesion TACs is approximately invariant between different tumors and
the subspaces of the normal tissue and the lesion TACs were different. For a test
region, right rectangle in Figure 6.11 (a), containing the small lesion, applications of
the GLRT with replacement model showed that the lesion-to-normal tissue contrast
was enhanced relative to the original FBP image, Figure 6.11 (f), while for a normal
tissue test region, left rectangle in Figure 6.11 (a), the GLRT shows no enhancement.

An interesting GLRT result for this breast cancer dynamic study was the en-
hancement of an unknown lesion which could not be confirmed by eye. This un-
known lesion was roughly located (confirmed by a later scan) inside the rectangular
region shown in Figure 6.12 (a) and (b), but was undiscernible to human eyes even
using a MAP reconstruction method. This patient did not have a follow-up scan un-
til 18 months later. From the newly acquired data, the “new” lesion was confirmed.
The results of GLRT (whit-noise assumption) based on the earlier FDG-PET scan
of this patient showed that this unknown lesion was detected successfully in both
MAP and FBP images, see Figure 6.12 (e) and (f), when compared to the 3-D mesh

of the test region, see Figure 6.12 (c) and (d).
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Figure 6.10: Breast cancer study: (a) a plane containing a primary cancer indicated
by an arrow, (b) a plane containing a metastatic lymph node indicated by an arrow,
(c) the TACs from the primary cancer, the metastatic lymph node and normal breast
tissues in an ROI indicated with a rectangle in (b).

6.3 Phantom Dynamic Study

6.3.1 Computer Simulated Phantom Data

Two computer simulated phantoms, one with five artificial lesions at the known
locations and the other with no lesions, were used in the phantom dynamic study,
see Figure 6.13 (a)-(b). The TACs of the normal and malignant tissues measured
from the clinical lung cancer FDG-PET dynamic study were applied to simulate the

lesion and normal tissue kinetics behavior, see Figure 6.13 (c).
During the forward projection of the phantom dynamic image, the total count

of projection data in each frame was scaled to approach the total count of the
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Figure 6.11: Breast cancer dynamic study: (a) two selected test regions: test region 1
containing the normal breast tissue and test region 2 containing a metastatic lymph
node in the FBP image (same as (b)), (b)-(c) 3-D mesh of test region 1 and test
region 2 indicated in (d). (d) TAC of the metastatic lymph node represented by the
lesion subspace and normal breast tissue subspace identified by the SVD method,
respectively, (e)-(f) the GLRT results on test region 1 and 2, respectively.
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Figure 6.12: A GLRT result of enhancing an “unknown” lesion in the breast cancer
FDG-PET dynamic study. The test region containing the unknown lesion in (a)
FBP and (b) MAP. The 3-D mesh of the test region: (c) FBP and (d) MAP. GLRT
(white noise): (e) FBP and (f) MAP.
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Figure 6.13: Left: lesion phantom image with 5 lesions, middle: normal tissue
phantom with no lesions, right: TACs for lesion and normal tissues.

corresponding frame in a clinical dynamic study. This will be called the low count
dynamic study in this research, while the total count of projection data for a high
count study is twice of the total count in a clinical dynamic study. During the
forward process, the sinogram data were corrupted with Poisson noise and blurred
kernels to simulate the noise process and system resolution. FBP, MAP, and OSEM
reconstruction methods were used for dynamic phantom image reconstruction. The
images (last frame) reconstructed by the FBP, MAP, and OSEM methods and the
corresponding observed TACs of normal and lesion tissues in the phantom dynamic
images are presented in Figure 6.14, where the reconstructed lesion images looked

like normal tissue images and the artificial lesions were hardly confirmed.
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The GLRT results for the FBP dynamic images are shown in Figure 6.15 (high
count data) and 6.16 (low count data), and the GLRTs for the MAP low count
dynamic phantom images were shown in Figure 6.17. The GLRT results for both

high count data and low count data improved the visualization of the artificial lesion

locations.

6.3.2 Receiver Operating Characteristic (ROC) Study

An ROC study was applied to the phantom dynamic study for comparing the perfor-
mance of detectors. Fifty lesion phantom studies (with 250 known lesions) and fifty
normal tissue phantom dynamic studies were conducted in a Monte Carlo simula-
tion. The rates of true and false positive decisions made from the three GLRT tests
were counted, respectively. The ROC curves were estimated by using the software
package ROCKIT 0.9B developed by Professor C.E. Metz, University of Chicago.
The resulting ROC curves from the FBP reconstructed dynamic phantom images
shows that the GLRT with spatial decorrelation (with area under curve Az=0.92)
are close to that for the GLRT with a white-noise (Az=0.93), see Figure 6.18 (a).

The ROC curve from the multi-pixel GLRT further improved the Az (=0.98).
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Figure 6.14: Left column: lesion phantom image with 5 lesions, middle column:
normal tissue phantom with no lesions, right column: TACs for lesion and nor-
mal tissues. From top row to bottom: original phantom, FBP, OSEM, and MAP
reconstructed images.
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Figure 6.15: The GLRT for high count FBP phantom data: (a) a test region, (b)-(c)
white noise assumption, (d)-(e) non-white noise assumption. 20
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Figure 6.16: The GLRT for low count FBP data: (a) a test region, (b)-(c) white
noise asumption, (d)-(e) non-white noise assumption.
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Figure 6.17: The GLRT for an MAP phantom image (low count data): (a) a test
region indicated by a rectangular, (b): GLRT (white noise assumption), (c): GLRT

(non-white noise assumption), (d): multi-pixel GLRT.
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We also compared the GLRT performance for different reconstruction algorithms.
The measured Az for our ROC curves can be viewed as a computer observers for dif-
ferent reconstruction algorithms. A reconstruction algorithm can be claimed “bet-
ter” if it achieves a higher Az. Figure 6.18 (b) shows that the Az (MAP) > Az
(OSEM) > Az (FBP) which can be interpreted as the iterative reconstruction meth-
ods (MAP and OSEM) outperform the FBP method not only in image visualization,

but also in the GLRT detection performance.

ROG sty 1

(a) (b)

Figure 6.18: ROC curves for the low count data simulation: (a) FBP: GLRT (white
noise, non-white noise) vs multi-pixel GLRT, where A, (multi-pixel GLRT) > A,
(GLRT with non-white noise) & A, (GLRT with white noise). (b) GLRT with white
noise assumption: A, (MAP) > A, (OSEM) > A, (FBP).
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Chapter 7

Conclusion

In order to improve early detection of small lesions using FDG-PET, computer-aided
lesion detection algorithms have been developed in this dissertation to assist visual
inspection in tumor. detection using dynamic FDG-PET. In our approach, we hy-
pothesized that the spatial and temporal metabolic features available from dynamic
FDG-PET images are identifiable in a clinically practical way and useful for lesion
detection. We showed that malignancies can be distinguished from normal tissues
on the basis of their rates of FDG uptake in terms of time activity curves, given
that lesions and normal tissues often differ in the rate of radiotracer accumulation
or disappearance. Since the rates of FDG uptake in tissues are often characterized
by a set of physiological factors and the time activity curves can be represented as

a linear combination of the physiological factors, we used the subspace spanned by
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the physiological factors as a key feature to distinguish normal tissues from malig-
nancies. By forming the dynamic FDG-PET images into useful spatial-temporal
data matrices, we were able to estimate the tumor and normal tissue subspaces
by signal subspace fitting methods that are widely used in array signal processing.
Then, applying the generalized maximum likelihood ratio principle, we adapted and
generalized the matched subspace detection techniques for small lesion detection in
dynamic FDG-PET. We demonstrated that with the matched subspace detectors,
the subspace feature(s) extracted from visible, large lesions can be employed to con-
firm suspected, but not unequivocally identifiable, small lesions. Results from both
clinical dynamic FDG-PET studies of patients with breast or lung cancer and dy-
namic phantom data showed that the physiological subspaces are straightforward
to identify and distinct for known tumors and normal tissues, and are valuable for
improving lesion diagnosis when combined with the matched subspace detection cri-
teria. Therefore, the detection methods proposed in this dissertation are promising
for improving early detection of small lesions. Based on these results, it is our be-
lief that such detection methods can be used to reduce costly multiple diagnostic

procedures and to guide surgical intervention.
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Appendix A

Oblique Projection

Let (H) denote the subspace spanned by the matrix H. If the subspaces (H) (p-
dimension) and (S) (t-dimension) are linearly independent, then the columns of the
concatenated matrix [HS] span a (p + t)-dimensional subspace (HS). The typical
orthogonal projection of a TAC y (€ RYN) onto (HS) is denoted by Pysy, where

Py is the orthogonal projection in the subspace (HS) and represented as
-1
Pys = [HS] (HS]"[HS])  [HS]". (A.1)

We can further re-express Pys as

Pus — [H 8] H'H H’s | [ HT
e STH S7S ST
_ [H o] H’H HTS | [ HT
STH S7S ST
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£ Eps+Esy (A.2)

where

-1
A HTH H'S HT
Brs = [HO][STH STS} [ST
-1
A HTH HTS HY
ESH:[OS][STH sTs} [ST |

The two projections, Exs and Egg, are called the oblique projections [6] with the
property that Exs and Esg have respective range spaces (H) and (S) and respective

null spaces (S) and (H), i.e.,

EysH = H, EysS =0,

EsyS = S, EsygH =0. (A.3)

The simplification version of the oblique projections Eps and Egy can be written

as

Eps = HMHTPLH)'H'P;

Esy = S(STP3S)'S™Py. (A.4)
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Hence,

Ppus

Eys+ Esy

H(HTPL{H) 'H7P$ + S(STP5S)™'S"Py.

(A.5)
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Appendix B

Local Statistics in PET Images

B.1 Local Statistics Calculation in PET FBP

images

The analytic computation (AC) for the local statistics of a PET FBP image was
originally developed by Huesman [17]. By the independence of observation data and
the linear properties of FBP, AC estimates the (co)variance of PET image pixels
from the projection data statistics via some scaling factors. Huesman’s algorithm
calculates local statistics directly from the projection data without image recon-
struction. Recently, Carson et al. [7] developed an approximation formula for the
variance of PET ROI values, which accounted the radioactivity distribution, atten-
uation, random, scatter, deadtime, detector normalization, scan length, decay, and
reconstruction filter. By the assumption that the pixel variances of any two pixels

are similar, and that the product of attenuation, normalization, wobbling and raw
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data is relatively uniform for those projection lines that substantially contribute to
the sum, they derived a simple formula for the correlation coefficient of any two
pixels, which is independent of the raw data.

Let the raw projection data in PET be an [-dimensional column vector p =
pT,pl,...,pL )7, wherel is the product of the total number of angles (ng) and the
total number of rays ‘n,, and pg (size: n, x 1) is the sinogram data in the angle 0.

Let the corrected data of p be p’ which consists of
pg'r = Ag (Nor (W - por — Ro,)—Ser), 0=12,...,mn9, 1= 1,2,...,n,.. (B.1)

The terms Ag, and Ny, in Eq. (B.1) are multiplicative correction terms for atten-
uation and detector efficiency (normalization). W, corrects for the fraction of time
spent in each wobble position and is generally independent of angle. Ry, and Sgr
are the estimates of random and scatter. The terms pq,-, P, Hors and Sp, have
units of counts, while all other terms are dimensionless.

Therefore, for any pixel g; with index ¢ at position i, ¥, the pixel value calcu-
lated by the FBP is the convolution of the corrected projection data pj,. with the

reconstruction filter h, that is,

ng nr
gi = Z Z h(z;cosf + y;sin 6 — T)Pg (B.2)

=1 r=l




In practice, additional linear interpolation steps are applied and the reconstructed

pixel value becomes

ng mNr

=SS h b, (B.3)

=1 r=I

where hgf)r is unique for the pixel ¢ in FBP at angle 6 and ray r.
B.1.1 Variance of Pixel in an ROI

From Eq. (B.3), the variance of the pixel ¢ can be simply written as

Var{g} = 3050 ()’ - Var{p}, }. (B.4)

6=1r=1
In a PET system, it is usually assumed that the signiﬁcant source of noise in pj . is
due to the Poisson statistics in the raw projection data ps,, that is, the noise in the
term Ag,, Noyy Wr, Ror, and Sp is small. Also, the raw count py, are statistically
independent Poisson distribution, so are the p, by the Eq. (B.1). Therefore, the

pixel variance in Eq. (B.4) can be approximated as

ng nr

Varfg} 2 33 (b )" - (43, N3, W) - Var(ps,)
~ ii_’;(hgr) - [42, N2, W2] - o (B5)
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We can further assume that for each angle 8, the product of p, and [A;,N(;Z,,Wf]
is relatively uniform in the ROI, i.e., we can approximate (A} .N;, W2]ps, by some

representative of them, namely [A2NZW2]ps. Therefore, Eq. (B.5) becomes

ng nNr

Var(g) = ;;(h N - [A2NEW?] o

ng

= Slanwp- X ()’
r=1

=1

=E[A2N 2| po - [l
6=1

IIh]2- 3 [AZNZW?) po

=1

= ¢- Z[A?N ] po (B.6)

IR

where ||h||; is defined as the 2-norm of the filter vector h and hy is the filter vector
associated with the angle . We used the observation that the 2-norm of the filter
vector hy in all angle are approximately equal in an RO, that is, [|h||2 = |he||2, for

all §. Hence, the value ¢; 2 ||h||2 can be determined a priori for the convolution

filter used in the FBP.
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B.1.2 Covariance of Pixels in an ROI

Following the similar steps in deriving the variance of a pixel, the covariance of any

two pixels can be computed as

g nr R
Cov(gig) = Y hihg; - Var (po)
f=1r=1
ng nr X
= Z Z h(B‘zr)'hglfr? ' [Az,rNGZ,rVVrz] Po,r (B7)
f=1r=1

where g; and gi are two pixel values of interest with reconstruction filters hg{l and
hg’f), respectively. The correlation coeficient of pixels g; and gy is given by
: COV(gj,gk)
p(girok) =
/Var(g;) - Var(ge)
3 5 WG - (43, NG WY e
- R (N a2 N2 T2 [T N[ 42 N2 T2 .
JIEE 08 (g} {5 5 040 (48,0892 e
(B.8)

Assume that the pixel variances of g; and gi in an ROI are similar, and that the prod-
uct A3, NZ,W?-pq, is relatively uniform for those projection lines that substantially

contribute to the sums, Eq. (B.8) can be further simplified as

ST
Plgirgr) = ng e 9:1(;=12 8 (k)2
] [E 5 0]
\/[9=1 rz=:1( 0’) 9z=:1 rg( e,r)
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where c; = 1/(e1 - ng). Thus, the correlation coefficient of any two pixels in an ROI

is independent of the raw data and Eq. (B.9) can be used for a set of pixel pairs at

various positions to produce a p(d) table.
B.2 Covariance Computation in MAP images

The method used in this dissertation to compute the covariance of the MAP re-
construction image was originally developed by Fessler [19, 20]. Recently, Jinyi and
Leahy [31] proposed a fast algorithm to reduce the computational complexity in

Fessler’s method. The following is a brief review of the fast covariance computation

of MAP image described in [31].
B.2.1 MAP Reconstruction

A PET system can be modeled as independent Poisson random variables y with

mean 7 related to the emission intensity image = through an affine transform

g=Pz+n (B.10)
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where P is the detection probability matrix and n accounts for the presence of noise
in the data. The detection probability matrix is modeled as P = D[n;]G, where
D[n;) is a diagonal matrix containing the correction factors, n;, i.e. the product of
the detector normalization, dead-time and attenuation correction factors!. G is the
geometric projection matrix representing the probability that an emission from each
voxel in the image produces, in the absence of attenuation effects, a photon pair at
each of the detector pairs in the system. The log-likelihood function for the Poisson

data model is

L(yle) = 3_y:log§: — §: + log yi! (B.11)
The MAP reconstruction is usually described as the maximizer of the log posterior
probability:

#(y) = arg max L(yle) - AU(2) (B.12)

where (8 is the hyper-parameter that determines the relative influence of the prior
and likelihood terms, L(y|z) is the log-likelihood function for the Poisson data model,

and U(z) is the Gibbs energy function depending on a sparse neighborhood matrix

C.

1D[n;] denotes a diagonal matrix with the (i, )th diagonal element equal to n;.
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B.2.2 Approximation of Covariance

Based on a fixed point of the MAP objective function and using a truncated Taylor
series expansion of the implicit estimator, Fessler [19, 20] developed a closed form

for the computation of covariance in the MAP reconstruction image
Cov(#) = [F + SC'C]'F[F + pc'c)! (B.13)

where F = P'D[1/#]P is the Fisher information matrix. This closed form involves
a computation of the inverse of a Hessian matrix or solving a related set of linear
equations. Hence, to reduce the computation complexity, Jinyi and Leahy [31] pro-
posed a fast computation method which uses the following approximation for the

Fisher information matrix

F ~ D.G'GD, (B.14)

where D, = D[x;] with

¥ 95n? [T
—_—. B.15
i g% ( )
Then,
Cov(z) = D;'B(z)'G'GB(z)"'D;* (B.16)
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where

B(z) £ G'G + D;'C'CD;". (B.17)

The covariance can be further approximated using the following observations: (i)
the matrix B(z) represents a local image blurring operator since the prior energy
function is defined on a local neighborhood and the blurring function G'G is also
local; (ii) the correlation between voxels drops off rapidly as a function of the distance
between them. The covariance with respect to voxel j is therefore dominated by the

contribution of ; and the following approximation can be made:

Cov;(2) = D:'B(z)"'G'GB(z)™'D;’e;

= K,;2K(ﬁf€j—2)_lGIGK(,BFE;-_'Z)—IGJ' (B.18)

where

K(ﬂn]—z) =G'G + fk;*C'C. (B.19)

Since G'G and C'C correspond to the shift invariant blurring operators, they have a
block Toeplitz structure and can be approximately diagonalized using the 2D discrete

Fourier transform, i.e.,

G'G = QDMNQ
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C'C = QDuQ (B.20)

where Q and Q', respectively, represent the Kronecker form of the 2D DFT matrix
and its inverse, \;’s are the 2D Fourier transform of the system geometric response

at the central voxel, and y;’s are the 2D Fourier transform of the central column of

C'C. By Eq. (B.20), Eq. (B.19) can be written as

K(65%)" = @Dl 19 (B:21)

Then, the final covariance approximation formula becomes

i
(A + Br5 i)

Cov;(8) = k7°Q'D |Qe (B.22)

In cases where only a small ROI is considered, the correlation structure can
be assumed to be invariant within the region. Hence the covariance matrix can be
computed by one modified backprojection to compute the ;’s and one 2D FFT. One
advantage of the above derivation is that A and p; are independent of the data and
can be pre-computed. Another advantage of Eq. (B.22) is that it is readily inverted
which is an attractive property for the pre-whitening process of the non-white PET

data for computer observer lesion detection.
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Appendix C

GLRT Can Not Be Improved by
Orthogonal Subspace Refining

Given two identified lesion subspace (H) and normal tissue subspace (S), the derived

GLRT in chapter 5 can be written as

TpL
L(y) = ;,TP;;:;’ (superimposed model)
TP_L
L.(y) = %ﬁ’% (replacement model). (C.1)

The refined subspace matrices by the orthogonal projection of (H) onto the comple-

ment subspace of (S) can be written as

S'=S, H =PiH (C.2)
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where P represents the orthogonal projection onto the complement subspace of

(S). Note that S’ is orthogonal to H'. Then we have the following properties:
HI=P§H=H—P5H — PH’=PH“PP5H (C3)

Pys =Py +Ps =Ppiu+Ps =Ppint+Ps= Pys. (C.4)

Superimposed model

From the property in Eq. (C.4), the GLRT for superimposed model can be written

as

Tpl Tpl
y' Pgy vy Psy
L;(Y) = yTPIJi/st = yTP]]f]sy = Ls(y) (05)

wherethe GLRTs before and after the orthogonal projection of the lesion subspace

onto the orthogonal complement of the normal tissue subspace are shown to be

equal.
Replacement model

The GLRT for the replacement model using H' and S’ is

Tpl
, y Pzy
Li(y) = —————yTP;y- (C.6)
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Then, by using the property in Eq. (C.3), we have

Hence,

Li(y) =

Y Phy
yTPJ':y

y” [P} + Pr.u]y

yTPgy

1

LI yTPp_ny
Le(y) yTPLy

< L.(y).

(C.7)

(C.8)

Eq. (C.8) shows that, for the replacement model, the performance of the GLRT

after applying the orthogonal projection refined subspaces is inferior to that using

T
. . y'pP
the original subspaces, because the scaler, —y—T—i——

PcHY
Pé/y

, is positive.
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Appendix D

Multi-Pixel GLRT Derivation

Given an ROI with P number of pixels, let the P-dimensional column vector f; 2
[£:(1), fi(2), -+, fi( P)]" denote the spatial pixel data for the i-th frame and let the

ROI data Fpxn = [f1,f2, -+, fn]. We assume that all the columns of the matrix F

are independent. Let Ynxp = y1,¥2,- -, YP) = F7T.

The hypothesis data model for the ROI under the replacement model assumption
is

H02Y=X0+No (Dl)
H:Y=X+N; '

where the noise N; is assumed to be a multivariate normal (MVN) with zero mean.

It is also assumed that the signal X; obeys the linear subspace model, i.e.,

Xo = S
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where H and S are the lesion and normal tissue subspaces, respectively, and ®; is
the corresponding coefficient matrix. Hence, the mean of temporal-spatial ROI data

becomes

S®,, under hypothesis Hyp

(D.3)
H®,, under hypothesis H;.

E{Y}= {

We assume that the spatial covariance matrix for each frame has the same structure
but with different energy level [7]. That means the spatial covariance matrix for the

i-th frame can be written as o;M, i.e.,
cov(f)=oM, 1=1,---,N (D.4)

where M is the spatial inter-pixel correlation matrix for all frames. Let Z = M-1/2F,

then the variance matrix for the whitened data Z is

[ oy Og +-- ON 1
0' a' ... 0'
var(zy=| - T (D.5)
L1 92 7 9N fpun,
Let R 2 [ry,rz.---,rp] = ZT. Then the covariance matrix for each column of R is
o 0 -
0 o, - 0
cov(r;) = ’ 247, i=12,---,P (D.6)
i 0 0 --- on I NN
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The ROI data will be statistically described as a Gaussian probability density func-
tion (PDF) based on the temporal-spatial data matrix R. After the whitening

process, by the independence of the columns r; in R, the joint Gaussian PDF of R

under hypothesis, say H;, becomes

fi(R)
= f(ry,re,---,rp|H1)
= L, f(ril Hy)
= TP, (2r)~N/?| Ay |7 %exp {-’2—1 [r; — B(r:)]" AT [ri — E(ri)]}
= (2n) NP2\ Ay~ exp {:23 é [r; — E(ri)]" AT [ — E(ri)]}

— (o) PPIAL et { S R - BR)T AT R - E(R)]}

-1
= (2m) VPRI et {—2—A1‘1 [R—E(R)|[R - E(R)]T} (D.7)
where “etr” denotes “exp trace”, and

E(R) = E(2")=E ([M‘I/ZF]T) = E (F'M~/?)

= E(Y)M/?=H® M (D.8)
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If we further assume that the mean of image is the same for all frame, i.e.,

&, £ ¢,17 (D.9)

where ¢, is the coefficient vector for all frames and 17 =[1,1,---,1]. Then,

E(R) = H¢,1"M™V/?

e

b;s” (D.10)
where by 2 Ho, and sT £ 1TM-/2, Hence, the PDF for R becomes
-1 T
fR) = @0 NPPIA et { AT (R busT) (R~ bisT) b.(pay)

In order to apply the generalized likelihood ratio test (GLRT) for the matched
subspace detector, the next step is to find the maximum likelihood estimate (MLE)

of A; and ¢,. Based on (D.11), the MLE of A; can be simply written as
Ay = -115(3 —bysT)(R — bysT)T. (D.12)

The MLE of ¢, can be derived from the minimization of |Fy, l, i.e.,

LR) = nll)in |Fy, | (D.13)
1
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where

A
Fy, =

(R — bysT)(R — bys”)7. (D.14)
Now expand Fy, as follows:

Fp, = RRT—Rsbl —b;s"R” + b;s”sb]. (D.15)

Let § 2 (s7s)!/?s and by 2 (sTs)!/?by, so bi87 = bysT. After the change of

variables,

F; = RRT—Rsbl —b;s"R” + b;b]
— (b, — R8)(b; — R8)” + RR” — (R8)(R3)”

= (b; —R8)(b, —R8)T + G (D.16)
where G 2 RR7” — (R3)(R8)T and G can be shown to be invertible [52]. Hence,

IFg,| = |G| |1+ (b —R8)(bs —R8)'G™|

1

|G| - I+ aa’G™| (D.17)

where a £ b; — R5. Now multiply the matrix D £ 1+ aaTG™! by a as follows:

Da = a+a(a’G™'a)
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= (1+a’G'a)a (D.18)

which shows that a is an eigenvector of D with the associated eigenvalue 1+a’Ga.

Let v;, for i = 1,2,--+, N — 1, be some orthogonal set of vectors, all perpendicular

to the vector G™'a. Then,

Dv; = (I+aa’G™)v;
= v;+a [(G‘la)Tvi]
= V; (Dlg)
which means v; is an eigenvector of D with eigenvalue equal to one, fori=1,2,---,N—
1. So Eq. (D.16) becomes
IF5,| = IG[-(1+a"G™"a)

= |G| [1+ (b = R8)"G'(bs - R3)]

= |G|- [1 + (¢, — RS)'G™'(He, - R3)] (D.20)

where H £ (s7s)/2H. The minimum of |Fg | can be derived by using

oo Qm =2 (55m) @m (D.21)
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provided Q is independent of ¢,. Then we have
brmin = (ATGTH)"H'G™'RS. (D.22)
Hence,

|F¢1|min

|G| - {1 + [fl(flTG“lfl)’ll:ITG‘lRé - Rg]T G™!

I

- [A@E"G'H)'HTG 'R - Rs|}

|G| - {1 + [GHATG'H) 'HTG™/?G™/?RS — G—1/2R§]T
[V AETGH)HTG/*G/*Rs — G™'/’Rs| }

= |G|- {1 + [A@ATA)'HTG /RS - G-1/2R§]T

- [A@ETH)HTGT/’RS — G™/*R3|}
where H £ G 'H
= |G| {1 +|(Pa - I)G'l/zRé]T [(Pg — I)G-WRg]}

= |G| {1 + [G-1/2R§]T P} [G“”ZRé]} (D.23)

where Py is an orthogonal projection matrix onto the subspace of H, and P is an

orthogonal projection matrix onto the complement subspace of H.
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Now, the GLRT for the ROI data matrix can be derived easily. Based on the
assumptions made for the ROI data model in this Appendix, the detection problem

becomes a test of the distributions:

H : Y: N [sqsolT,AO@M] (D.24)
H : Y: N[H¢11T,A1®M] ’
which is equivalent to
{ Ho : REYM™2: N[S¢o1™M 2 Ao @ 1] (D.25)

H, : REYM™2: N[H$1"M7/2 A, @ 1]
where ® denotes the Kronecker product. The likelihood ratio test can be written as

_ L(¢,,A;Y) _ L(by,A;;R)
Lo, Ao;Y)  L(bo,Ag;R)’

1Y) (D.26)

Hence, the GLRT can be derived by substituting the MLE of A; and ®;:

. . P2
i(Y):L(b“A“R)=<|A°|) . (D.27)

L(bo, Ag; R) |A4]

Then it is more convenient to replace the GLRT by the (P/2)-root GLRT

A 2/P Aol
LY) = [iD]" ==

() =[] =2

G- {1+ (G"V/’R8)"P(G~1/?R8)}
Gl {1+ (G-1/2R3)TP§(G-1/2R5)}
1+ (G-1/?R3)TPL(G™/*R3)

1+ (G-1/2R5)TPL(G-1/?R8)’

(D.28)
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Appendix B: Presentation at SNM Annual Conference,
Torrance, Ca. June 2001
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Assessment of ROl-based Time
Activity Analyses in Dynamic
PET for Oncology

X. Yu, C.C. Huang and P. S. Conti
PET Imaging Science Center, USC

o)

G w}’ 2
\Jgf s ,¥5V

OBJECTIVE

« To develop a method for detecting tumors
in PET images based on

— time activity curve (TAC) information

« To perform an assessment on three TAC
evaluation methods for tumor detection
with

— receiver operating characteristic
(ROC) study




APPROACH

Implement three TAC evaluation
methods in computer software

Build a machine observer with three
different TAC evaluations

Generate phantom dynamic raw data
with or without artificial lesions and
reconstruct FBP images from the raw
data

Use machine observer to evaluate the
phantom images and perform ROC study

TAC EVALUATION METHOD 1

« Assuming no spatial correlation
between pixels

— Averaging TACs over ROI
— Averaging operation will lower the

noise to certain extent if no inter-
pixel correlation




TAC EVALUATION METHOD 2

« Assuming inter-pixel correlation

— Compute ROI covariance matrix
frame by frame

— Averaging TACs over ROI after
inter-pixel decorrelation

TAC EVALUATION METHOD 3

« Assuming that each frame has the same
inter-pixel correlation structure R, but with

different energy levels: R;= ¢;R

— Compute ROI covariance matrix from
the least noisy frame

— Decorrelate ROl with the covariance

— Averaging TACs over ROI after
inter-pixel decorrelation




COVARIANCE MATRIX
COMPUTATION

« Huesman’s analytical computation:

— based on uncorrelation of PET
projection data and linearity of FBP

« Carson’s simplification formulae:
— assume that the statistics of
neighboring projections are similar
— covariance is independent of raw
data

MACHINE OBSERVER

« Design principle: the maximum
likelihood ratio test

» Function: For a given ROI, make a
decision based on the likelihood that
the observed TACs are in

— alesionor
— normal tissues




DATA FOR STUDAY

« Computer generated phantom
dynamic data

— Each data sequence was set to contain
5 artificial lesions or no lesions

— 50 sets in total are generated for each
setting

PHANTOM

20 40 60 80 100 120




PHANTOM: FBP

red — lesion

blue -- normal tissue

7000 2000 3000

IMAGE GENERATION AND
RECONSTRUCTION

« Forward projection with
— system blurring
— Poison noise generation
* Filtered backprojection (FBP) with

— Han filter and 0.5 cutting
frequency




PHANTOM: FBP

20 40 60 80 100 120

NOTATION

True Positive

True Negative

False Positive

False Negative

Positive Predication Value
Negative Predication Value




DEFINITIONS
Accuracy: (TP+TN)/(TP+TN+FP+FN)
Sensitivity: TP/(TP+FN)
- Specificity: TN/(TN+FP)
PPV: TP/(TP+FP)
NPV: TN/(TN+FN)

AV Area under curve

ROC PERFORMANCE

I ] e
0.79 0.77 0.88

Sensitivity SN a4 0.77 0.79
Specificity JER:¥ 0.77 0.97
PPV 0.80 0.77 0.96
NPV 0.81 0.77 0.97

0.93 0.92 0.98




ROC study

— Method 3
- Method 1
- Method 2

True Positive Rate

0.2 0.4 0.6 0.8
False Positive Rate

RESULTS AND COMPARISON

« Compared to Methods 1 and 2, Method
3 increased:

— Specificity by 20%
— Accuracy by 11%

— Area under curve by 6.5%




‘ CONCLUSION

+ No significant difference between Methods 1
and 2, possibly due to

— inaccurate covariance matrix

estimation in the early noisy frames
— simplified covariance matrix computation

« Constrained inter-pixel decorrelation
improves TAC-based lesion detection




